
Security Audit Report for Ferro Contracts

Date: April 28, 2022

Version: 1.0

Contact: contact@blocksecteam.com

mailto:contact@blocksecteam.com

Contents

1 Introduction 1
1.1 About Target Contracts . 1

1.2 Disclaimer . 2

1.3 Procedure of Auditing . 2

1.3.1 Software Security . 2

1.3.2 DeFi Security . 3

1.3.3 NFT Security . 3

1.3.4 Additional Recommendation . 3

1.4 Security Model . 3

2 Findings 5
2.1 Software Security . 5

2.1.1 The unnecessary check in SwapUtils.sol and MetaSwapUtils.sol 5

2.2 DeFi Security . 6

2.2.1 Reentrancy issues . 6

2.2.2 Deflation token issue . 8

2.2.3 UUPS vulnerability . 9

2.3 Additional Recommendation . 9

2.3.1 Fix incorrect comments . 9

2.3.2 Save gas . 10

2.3.3 Address the concern of the centralization design 10

2.3.4 Add a check for the functions add and set in the contract FerroBoost 11

i

Report Manifest

Item Description
Client Ferro
Target Ferro Contracts

Version History

Version Date Description
1.0 April 28, 2022 First Released

About BlockSec The BlockSec Team focuses on the security of the blockchain ecosystem, and col-

laborates with leading DeFi projects to secure their products. The team is founded by top-notch security

researchers and experienced experts from both academia and industry. They have published multiple

blockchain security papers in prestigious conferences, reported several zero-day attacks of DeFi applica-

tions, and released detailed analysis reports of high-impact security incidents. They can be reached at

Email, Twitter and Medium.

ii

https://www.blocksecteam.com
mailto:contact@blocksecteam.com
https://twitter.com/BlockSecTeam
https://blocksecteam.medium.com/

Chapter 1 Introduction

1.1 About Target Contracts

Information Description
Type Smart Contract
Language Solidity
Approach Semi-automatic and manual verification

The files that are audited in this report include the following ones. The Version 1 includes all files,

and the others includes only files different from previous versions.

Version 1

File Name MD5
/ferro-buyback-audit/contracts/FerroMaker.sol 9e3c507ef753bedd4cf00402c1257176

/ferro-buyback-audit/contracts/StableSwapBurner.sol 93ed9ca05be04d8a483d5e7211d61d89

/ferro-buyback-audit/contracts/USDCBurner.sol 3c008bd5bd95f9156b6445b5fb6cc825

/ferro-farm-audit/contracts/FerroFarm.sol 46427baff937d9868b4393d226147db4

/ferro-farm-audit/contracts/FerroBoostDepositToken.sol fc17d393519972a94874724d9dc85add

/ferro-farm-audit/contracts/FerroBoost.sol 0a17d168550127a60ab51ae604cce5b9

/ferro-farm-audit/contracts/FerroToken.sol 888e3b54708de84e23e0f1a80b7cf36a

/ferro-farm-audit/contracts/FerroVesting.sol 1359042ef79c3855f920de861492d264

/ferro-farm-audit/contracts/FerroBar.sol 42350495af965171d6f38910e363b301

/ferro-stableswap-master/contracts/AmplificationUtils.sol 6c19a718b3c00275460764d0b8a65b73

/ferro-stableswap-master/contracts/MathUtils.sol e56a7a80beace24321fe317250b35e78

/ferro-stableswap-master/contracts/SwapDeployer.sol 66ec7e22b098159c60fd4d51670053b3

/ferro-stableswap-master/contracts/OwnerPausableUpgradeable.sol 976925fbd8d0125af93a3647540771b7

/ferro-stableswap-master/contracts/meta/MetaSwap.sol 04fbe511935cf421b8924210f963b993

/ferro-stableswap-master/contracts/meta/MetaSwapDeposit.sol 8b7cd1c9599a8c74e89ea7bbcbed10f6

/ferro-stableswap-master/contracts/meta/MetaSwapUtils.sol 61e73c3fd59b1dd88708883fbfb002eb

/ferro-stableswap-master/contracts/LPToken.sol 6066d5f2b55171ff6509699193b04ca1

/ferro-stableswap-master/contracts/Swap.sol edddaff7c5fab26c43c68e43b815df66

/ferro-stableswap-master/contracts/helper/GenericERC20.sol 9cbd95a1484c6d9330a14297d986bccd

/ferro-stableswap-master/contracts/SwapUtils.sol b573fcd2a568477df30b5c440644c799

Version 2

/ferro-farm-audit/contracts/FerroBoost.sol ee2126cb829f67dc9b64b8dd8dba196f

/ferro-farm-audit/contracts/FerroFarm.sol bc60e8d70f00f361e022ed73ad865586

/ferro-farm-audit/contracts/FerroVesting.sol d52864ce83c162dfd75a2b50b3875f57

/ferro-stableswap-master/contracts/meta/MetaSwap.sol b22daf2126d3115761a63f4b38defc83

/ferro-stableswap-master/contracts/meta/MetaSwapUtils.sol 19dd5207ddcedb13737a0ec10e5bae7f

/ferro-stableswap-master/contracts/Swap.sol ca720254961398d0919e5a6ce4bdeaaf

/ferro-stableswap-master/contracts/SwapUtils.sol ea407b543c114567f97fcc44dde969d1

1

1.2 Disclaimer

This audit report does not constitute investment advice or a personal recommendation. It does not

consider, and should not be interpreted as considering or having any bearing on, the potential economics

of a token, token sale or any other product, service or other asset. Any entity should not rely on this report

in any way, including for the purpose of making any decisions to buy or sell any token, product, service or

other asset.

This audit report is not an endorsement of any particular project or team, and the report does not

guarantee the security of any particular project. This audit does not give any warranties on discovering

all security issues of the smart contracts, i.e., the evaluation result does not guarantee the nonexistence

of any further findings of security issues. As one audit cannot be considered comprehensive, we always

recommend proceeding with independent audits and a public bug bounty program to ensure the security

of smart contracts.

The scope of this audit is limited to the code mentioned in Section 1.1. Unless explicitly specified,

the security of the language itself (e.g., the solidity language), the underlying compiling toolchain and the

computing infrastructure are out of the scope.

1.3 Procedure of Auditing

We perform the audit according to the following procedure.

Vulnerability Detection We first scan smart contracts with automatic code analyzers, and then

manually verify (reject or confirm) the issues reported by them.

Semantic Analysis We study the business logic of smart contracts and conduct further investiga-

tion on the possible vulnerabilities using an automatic fuzzing tool (developed by our research team).

We also manually analyze possible attack scenarios with independent auditors to cross-check the

result.

Recommendation We provide some useful advice to developers from the perspective of good

programming practice, including gas optimization, code style, and etc.

We show the main concrete checkpoints in the following.

1.3.1 Software Security

Reentrancy

DoS

Access control

Data handling and data flow

Exception handling

Untrusted external call and control flow

Initialization consistency

Events operation

Error-prone randomness

Improper use of the proxy system

2

1.3.2 DeFi Security

Semantic consistency

Functionality consistency

Access control

Business logic

Token operation

Emergency mechanism

Oracle security

Whitelist and blacklist

Economic impact

Batch transfer

1.3.3 NFT Security

Duplicated item

Verification of the token receiver

Off-chain metadata security

1.3.4 Additional Recommendation

Gas optimization

Code quality and style�
Note The previous checkpoints are the main ones. We may use more checkpoints during the auditing

process according to the functionality of the project.

1.4 Security Model

To evaluate the risk, we follow the standards or suggestions that are widely adopted by both industry

and academy, including OWASP Risk Rating Methodology 1 and Common Weakness Enumeration 2. The

overall severity of the risk is determined by likelihood and impact. Specifically, likelihood is used to estimate

how likely a particular vulnerability can be uncovered and exploited by an attacker, while impact is used to

measure the consequences of a successful exploit.

In this report, both likelihood and impact are categorized into two ratings, i.e., high and low respec-

tively, and their combinations are shown in Table 1.1.

Accordingly, the severity measured in this report are classified into three categories: High, Medium,

Low. For the sake of completeness, Undetermined is also used to cover circumstances when the risk

cannot be well determined.

Furthermore, the status of a discovered issue will fall into one of the following four categories:

Undetermined No response yet.

Acknowledged The issue has been received by the client, but not confirmed yet.

Confirmed The issue has been recognized by the client, but not fixed yet.

1https://owasp.org/www-community/OWASP_Risk_Rating_Methodology

2https://cwe.mitre.org/

3

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://cwe.mitre.org/

Table 1.1: Vulnerability Severity Classification
Im

pa
ct

High High Medium

Low Medium Low

High Low

Likelihood

Fixed The issue has been confirmed and fixed by the client.

4

Chapter 2 Findings

In total, we find four potential issues. We have four recommendations.

- High Risk: 0

- Medium Risk: 2

- Low Risk: 2

- Recommendations: 4

ID Severity Description Category Status

1 Low
The unnecessary check in SwapUtils.sol and
MetaSwapUtils.sol

Software Security Fixed

2 Medium Reentrancy issues DeFi Security Fixed
3 Medium Deflation token issue DeFi Security Fixed
4 Low UUPS vulnerability DeFi Security Fixed
5 - Fix incorrect comments Recommendation Fixed
6 - Save gas Recommendation Fixed

7 -
Address the concern of the centralization de-
sign

Recommendation Confirmed

8 -
Add a check for the functions add and set in
the contract FerroBoost

Recommendation Fixed

The details are provided in the following sections.

2.1 Software Security

2.1.1 The unnecessary check in SwapUtils.sol and MetaSwapUtils.sol

Severity Low

Status Fixed in Version 2.

Introduced by Version 1.

Description As shown in the following code snippet, the parameter tokenAmount is the amount of the lp

token to burn. The function calculateWithdrawOneTokenDY calculates the number of tokens (indicated by

tokenIndex) that could be withdrawn. However, the code in line 211 requires that the tokenAmount should

be less or equal than xp[tokenIndex] that represents the pool balance of the token that will be withdrawn.

This check seems to be a mistake.

219 function calculateWithdrawOneTokenDY(

220 Swap storage self,

221 uint8 tokenIndex,

222 uint256 tokenAmount,

223 uint256 totalSupply

224)

225 internal

226 view

227 returns (

228 uint256,

229 uint256,

5

230 uint256

231)

232 {

233 // Get the current D, then solve the stableswap invariant

234 // y_i for D - tokenAmount

235 uint256[] memory xp = _xp(self);

236
237 require(tokenIndex < xp.length, "Token index out of range");

238
239 CalculateWithdrawOneTokenDYInfo

240 memory v = CalculateWithdrawOneTokenDYInfo(0, 0, 0, 0, 0);

241 v.preciseA = _getAPrecise(self);

242 v.d0 = getD(xp, v.preciseA);

243 v.d1 = v.d0.sub(tokenAmount.mul(v.d0).div(totalSupply));

244
245 require(tokenAmount <= xp[tokenIndex], "Withdraw exceeds available");

Listing 2.1: SwapUtils.sol

This issue is also found in the function _calculateWithdrawOneTokenDY of MetaSwapUtils.sol (L263).

Impact The removeLiquidityOneToken will be reverted if the amount of the lp token to burn greater than

the pool balance of the token to be withdrawn.

Suggestion Remove this check.

2.2 DeFi Security

2.2.1 Reentrancy issues

Severity Medium

Status Fixed in Version 2.

Introduced by Version 1.

Description There are a few functions that update critical variables after calling an untrusted token and

use these variables before the untrusted call, which may be susceptible to the Re-entrancy attack. The

details are shown in below code snippets.

102 function _withdraw(address _receiver) private {

103 User storage vestingMap = vestingInfo[_receiver];

104 uint256 amountToWithdraw = vestingAmount(_receiver) - vestingMap.released;

105 token.safeTransfer(_receiver, amountToWithdraw);

106 vestingMap.released += amountToWithdraw;

107 emit TokenReleased(_receiver, amountToWithdraw);

108 }

Listing 2.2: FerroVesting.sol

The amount of token to be withdrawn is calculated in line 104, which uses the variable vestingMap.rel-

-eased. If the token has a callback mechanism, then the Re-entrancy attack that delays the execution of

code in line 106 and withdraws all the reserves of FerroVesting contract can work.

6

196 function deposit(uint256 _pid, uint256 _amount) external {

197 PoolInfo storage pool = poolInfo[_pid];

198 UserInfo storage user = userInfo[_pid][msg.sender];

199 updatePool(_pid);

200 if (user.amount > 0) {

201 uint256 pending = user.amount.mul(pool.accFerPerShare).div(1e18).sub(user.rewardDebt);

202 if (pending > 0) {

203 safeFerTransfer(msg.sender, pending, pool);

204 }

205 }

206 if (_amount > 0) {

207 pool.lpToken.safeTransferFrom(address(msg.sender), address(this), _amount);

208 user.amount = user.amount.add(_amount);

209 }

210 user.rewardDebt = user.amount.mul(pool.accFerPerShare).div(1e18);

211 emit Deposit(msg.sender, _pid, _amount);

212 }

Listing 2.3: FerroFarm.sol

The code in line 210 updates the variable user.rewardDebt that is used to calculate the pending

rewards. If the pool.lpToken has a callback mechanism, then the Re-entrancy attack can repeatedly

obtain rewards by delaying the update of user.rewardDebt.

215 function withdraw(uint256 _pid, uint256 _amount) external {

216 PoolInfo storage pool = poolInfo[_pid];

217 UserInfo storage user = userInfo[_pid][msg.sender];

218 require(user.amount >= _amount, "withdraw: not good");

219 updatePool(_pid);

220 uint256 pending = user.amount.mul(pool.accFerPerShare).div(1e18).sub(user.rewardDebt);

221 if (pending > 0) {

222 safeFerTransfer(msg.sender, pending, pool);

223 }

224 if (_amount > 0) {

225 user.amount = user.amount.sub(_amount);

226 pool.lpToken.safeTransfer(address(msg.sender), _amount);

227 }

228 user.rewardDebt = user.amount.mul(pool.accFerPerShare).div(1e18);

229 emit Withdraw(msg.sender, _pid, _amount);

230 }

Listing 2.4: FerroFarm.sol

Similarly, if the pool.lpToken(in line 226) has a callback mechanism, then the Re-entrancy attack also

works.

233 function emergencyWithdraw(uint256 _pid) external {

234 PoolInfo storage pool = poolInfo[_pid];

235 UserInfo storage user = userInfo[_pid][msg.sender];

236 pool.lpToken.safeTransfer(address(msg.sender), user.amount);

237 emit EmergencyWithdraw(msg.sender, _pid, user.amount);

238 user.amount = 0;

239 user.rewardDebt = 0;

7

240 }

Listing 2.5: FerroFarm.sol

The emergencyWithdraw function allows users to withdraw their deposits. If the pool.lpToken has a

callback mechanism, the reset of user.amount (in line 238) can be delayed by the Re-entrancy attack.

Impact The reserves of FerroFarm and FerroVesting are at risk if they support tokens with callback

mechanism, such as ERC777 tokens.

Suggestion Move the code updating critical variables before the untrusted call or use Re-entrancy guard.

Otherwise, do not support tokens with a callback mechanism.

Feedback from the Project Not supporting token with callback mechanism. Only our stablecoin LP

token.

For the contract FerroVesting, the project fixed the issue as our suggestion. For the contract FerroFarm,

the project ensures that the pool.lpToken has no callback mechanism. Therefore, we mark this issue as

fixed.

2.2.2 Deflation token issue

Severity Medium

Status Fixed.

Introduced by Version 1.

Description If the pool.lpToken is a deflation token that charges fees for each transfer, then the code in

line 208 can not record the correct users’ deposits.

196 function deposit(uint256 _pid, uint256 _amount) external {

197 PoolInfo storage pool = poolInfo[_pid];

198 UserInfo storage user = userInfo[_pid][msg.sender];

199 updatePool(_pid);

200 if (user.amount > 0) {

201 uint256 pending = user.amount.mul(pool.accFerPerShare).div(1e18).sub(user.rewardDebt);

202 if (pending > 0) {

203 safeFerTransfer(msg.sender, pending, pool);

204 }

205 }

206 if (_amount > 0) {

207 pool.lpToken.safeTransferFrom(address(msg.sender), address(this), _amount);

208 user.amount = user.amount.add(_amount);

209 }

210 user.rewardDebt = user.amount.mul(pool.accFerPerShare).div(1e18);

211 emit Deposit(msg.sender, _pid, _amount);

212 }

Listing 2.6: FerroFarm.sol

Impact If the FerroFarm contract supports deflation token, each invocation of deposit and withdraw will

cause the contract to lose assets.

Suggestion Record the balance change rather than the parameter _amount. Otherwise, do not support

deflation tokens.

8

Feedback from the Project Not supporting token with deflation mechanism. Only our stablecoin LP

token.

Since the project ensures that the pool.lpToken can not be deflation token, we mark this issue as fixed.

2.2.3 UUPS vulnerability

Severity Low

Status Fixed.

Introduced by Version 1.

Description The FerroBoost contract inherits the UUPSUpgradeable contract of OpenZeppelin. Before

version 4.3.2 1, the UUPSUpgradeable contract has a vulnerability that can cause the FerroBoost contract

(logic contract) to self-destruct itself. The blog 2 gives a detailed description about the vulnerability.

Impact If the version of OZ library is less than 4.3.2, then it is possible to be attacked and cause the

FerroBoost contract to self-destruct itself.

Suggestion Use a OZ library with a version higher than or equal to 4.3.2.

Feedback from the Project Lib is up to date. 4.5.2.

2.3 Additional Recommendation

2.3.1 Fix incorrect comments

Status Fixed in Version 2.

Introduced by Version 1.

Description There are some incorrect comments in codes:

MetaSwap.sol(line 367): the ‘tokenAmount‘ should be "the amount of lp token to burn rather than the

amount of the token you want to receive"

MetaSwapUtils.sol(line 171): the ‘tokenAmount‘ should be "the amount of lp token to burn rather

than the amount to withdraw in the pools precision"

MetaSwapUtils.sol(line 227): the ‘toeknAmount‘ should be "the amount of lp token to burn" rather

than "the amount to withdraw in the pools precision"

Swap.sol(line 440): the ‘tokenAmount‘ should be "the amount of lp token to burn rather than the

amount of the token you want to receive"

SwapUtils.sol(line 139): the ‘tokenAmount‘ should be "the amount of lp token to burn rather than the

amount to withdraw in the pools precision"

SwapUtils.sol(line 190): the ‘tokenAmount‘ should be "the amount of lp token to burn rather than the

amount to withdraw in the pools precision"

Impact NA

Suggestion Correct these comments.

1https://github.com/OpenZeppelin/openzeppelin-contracts/releases/tag/v4.3.2

2https://forum.openzeppelin.com/t/uupsupgradeable-vulnerability-post-mortem/15680

9

https://github.com/OpenZeppelin/openzeppelin-contracts/releases/tag/v4.3.2
https://forum.openzeppelin.com/t/uupsupgradeable-vulnerability-post-mortem/15680

2.3.2 Save gas

Status Fixed in Version 2.

Introduced by Version 1.

Description There are recommendations that can save the gas usage.

Remove the field cliff of the struct User in the contract FerroVesting, because it is not used.

Modify the function getMultiplier of the contract FerroFarm as internal function, because it has no

meaning to expose it to the user.

Remove the usage of SafeMath library in the contract FerroFarm, because Solidity higher than 0.8.0

does the same checks for math operations.

Make the variables startBlock and MAX_FER_PER_BLOCK in the contract FerroFarm as immutable

variables, because it has no code to update them.

Make the variables: ferroFarm, fer, xFER, and depositToken in the contract FerroBoost as im-

mutable variables, because it has no code to update them.

Make the variable depositTokenPid in the contract FerroBoost as constant 0.

Impact NA

Suggestion NA.

2.3.3 Address the concern of the centralization design

Status Confirmed.

Introduced by Version 1.

Description As shown in below code, the governance token FER can be minted by the owner of the

contract FerroToken.

8 contract FerroToken is ERC20, Ownable {

9 constructor() ERC20("FerroToken", "FER") {}

10
11 /// @notice Creates ‘_amount‘ token to ‘_to‘. Must only be called by the owner (FerroFarm).

12 function mint(address _to, uint256 _amount) public onlyOwner {

13 _mint(_to, _amount);

14 }

15 }

Listing 2.7: FerroToken.sol

Impact Authorized accounts can infinitely mint the governance token FER. If the private keys of these

accounts are leaked, the project will collapse.

Suggestion Adopt a decentralized method to manage authority (e.g., DAO contract), or leverage a se-

cure private key solution (e.g., multi-signed wallet, and TEE based security key management) to manage

the private keys of authorized EOAs.

Feedback from the Project The token ownership will goes to FerroFarm – should be alright. Flow (sim-

ilar to VVS): 1. create token 2. mint token to different wallet (based on tokenomic) 3. transfer ownership to

farm

10

2.3.4 Add a check for the functions add and set in the contract FerroBoost

Status Fixed in Version 2.

Introduced by Version 1.

Description As shown in below code, the variable pool.multiplier must be greater than zero.

100 function depositFor(

101 uint256 _pid,

102 uint256 _amount,

103 address _user

104) public {

105 PoolInfo storage pool = poolInfo[_pid];

106 require(pool.multiplier > 0, "FerroBoost: Invalid Pool ID");

Listing 2.8: FerroBoost.sol

Impact NA.

Suggestion Add the check require(_multiplier>0, "XXX") for the functions add and set.

11

	1 Introduction
	1.1 About Target Contracts
	1.2 Disclaimer
	1.3 Procedure of Auditing
	1.3.1 Software Security
	1.3.2 DeFi Security
	1.3.3 NFT Security
	1.3.4 Additional Recommendation

	1.4 Security Model

	2 Findings
	2.1 Software Security
	2.1.1 The unnecessary check in SwapUtils.sol and MetaSwapUtils.sol

	2.2 DeFi Security
	2.2.1 Reentrancy issues
	2.2.2 Deflation token issue
	2.2.3 UUPS vulnerability

	2.3 Additional Recommendation
	2.3.1 Fix incorrect comments
	2.3.2 Save gas
	2.3.3 Address the concern of the centralization design
	2.3.4 Add a check for the functions structurecoloradd and structurecolorset in the contract FerroBoost

		2022-04-28T20:41:30+0800
	BlockSec Audit Team

